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Abstract

We present a nonperturbative, first-principles numerical approach for time-

dependent problems in the framework of quantum field theory. In this approach

the time evolution of quantum field systems is treated in real time and at the

amplitude level. As a test application, we apply this method to QED and study

photon emission from an electron in a strong time-dependent external field. Co-

herent superposition of electron acceleration and photon emission is observed in

the nonperturbative regime.
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1 Introduction

Solving time-dependent problems in quantum field theory is desired for a wide range
of applications. One important area is in scattering processes. Simulating scattering
processes as time-dependent processes at the amplitude level opens up possibilities
for handling complicated scenarios from first-principles. Typical examples include:
1) The asymptotic states cannot be well-defined. For example, long range forces exist
between the colliding particles; another example is parton collisions in the deconfined
medium created in relativistic heavy-ion collisions. 2) The scattering processes occur
in the presence of time-dependent background fields, which are typically encountered
in strong field laser physics as well as in relativistic heavy-ion physics. In the former
case, time-dependent electromagnetic fields are provided by laser beams, and in the
latter case, colliding nuclei create strong and time-dependent (color-)electromagnetic
fields. 3) One is interested in the explicit time evolution of quantum field ampli-
tudes during scattering processes, which could shed light on, e. g., the mechanism of
hadronization in QCD.

To address time-dependent processes at the amplitude level, one first needs a
stationary state description for stable particles participating in the time-dependent
process in terms of quantum field amplitudes. This was achieved by the previously
constructed Basis Light-front Quantization (BLFQ) [1, 2]. The BLFQ adopts the
light-front quantization and the Hamiltonian framework, see Ref. [3] for a review on
the light-front dynamics. It solves for the (boost-invariant) light-front amplitudes for
both bound states and scattering states by diagonalizing the light-front Hamiltonian
of the quantum field system. Recently, the efforts of applying BLFQ to positronium
systems have been initiated [4, 5].
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In this paper, we introduce an extension of the BLFQ to the time-dependent
regime, which is called the time-dependent Basis Light-Front Quantization
(tBLFQ) [6, 7]. Based on the stationary amplitudes obtained in BLFQ, tBLFQ eval-
uates the time-evolution of quantum field configurations by explicitly solving the
time-dependent Schrödinger equation. This approach provides a natural framework
for addressing scattering problems from a time-dependent perspective.

In this work, we illustrate tBLFQ through an application to strong field laser
physics. Specifically, we study the “nonlinear Compton scattering”(nCs) process [8,9],
in which an electron is excited by a background laser field and emits a photon. This
paper is organized as follows: in Section 2, we introduce our model for the background
laser field; in Section 3 we discuss the formalism of tBLFQ; in Section 4 we give a brief
review on BLFQ which is employed to construct basis states for tBLFQ; in Section 5
we conduct a sample calculation for the nCs process and present the numerical results.
Finally we conclude and provide our outlook for future work in Section 6.

2 Background field

We model the laser background as a classical field (i. e., we neglect back reaction on
the laser). We consider a longitudinal periodic electric field pointing in the 3-direction
with profile,

E3(x+, x−) = −E3
0 sin (l

−
x−)Θ(x+)Θ(∆x+ − x+), (1)

where E3
0 is the peak amplitude and l

−
is the frequency. The theta functions impose

a finite light-front time duration on the field. An appropriate gauge potential is

A−(x+, x−) =
E3

0

l
−

cos (l
−
x−)Θ(x+)Θ(∆x+ − x+). (2)

The dependence on x+ and x− makes this particularly suitable to a light-front treat-
ment.

3 Quantum evolution

In tBLFQ, we calculate the evolution of quantum field configurations at the amplitude
level. For the nCs process, the Hamiltonian P− contains two parts, P−

QED which is the

full interacting light-front Hamiltonian of QED, and interactions V (x+) introduced
by the external field, so

P−(x+) = P−

QED + V (x+) . (3)

Both the QED Hamiltonian P−

QED and the external field interaction V (x+) may
induce transitions on the quantum field amplitudes over time. In the nCs process,
we are, however, mostly interested in transitions induced by the external field V (x+).
Therefore, we adopt an interaction picture, in which the light-front QED Hamil-
tonian P−

QED serve as the “main” part of the Hamiltonian and the external field
interaction V (x+) as the “interaction” part. In this interaction picture, the quantum
field amplitude evolves according to

i
∂

∂x+
|ψ;x+〉I =

1

2
VI(x

+)|ψ;x+〉I , (4)

where |ψ;x+〉I = eiP
−

QED
x+/2|ψ;x+〉 is the quantum field amplitude in the interaction

picture, and the “interaction Hamiltonian in the interaction picture” VI evolves in
time according to

VI(x
+) = e

i
2
P−

QED
x+

V (x+) e−
i
2
P−

QED
x+

. (5)
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The solution to (4) can be formally written in terms of a time-ordered (T+) series as

|ψ;x+〉I = T+ e

−
i
2

x+∫

x
+
0

VI dx+

|ψ;x+0 〉I , (6)

where |ψ;x+0 〉I is the initial quantum field amplitude at light-front time x+0 . In the
nCs process, this initial state corresponds to a single physical electron.

To implement this solution numerically, we need to specify a basis for the quantum
field amplitudes |ψ;x+〉I as well as the external field interaction VI(x

+). Eq. (5)
suggests that the most convenient basis is what comprises the eigenstates of the light-
front QED Hamiltonian, P−

QED. We denote this basis as |β〉, which can be found by

solving the eigenvalue problem for P−

QED,

P−

QED|β〉 = P−

β |β〉, (7)

where P−

β is the eigenvalue (light-front energy) for the eigenstate |β〉. In tBLFQ, we
employ the previously constructed BLFQ [1,2] to solve this eigenvalue problem. More
details will be shown in the next section.

In terms of the basis states |β〉, the quantum field state |ψ;x+〉 is represented as

|ψ;x+〉I =
∑

β

cβ(x
+)|β〉, (8)

where cβ(x
+) = 〈β|ψ;x+〉 is the amplitude in the basis |β〉. The initial state in

the nCs process — a physical electron — is an eigenstate of P−

QED and thus can be
trivially expressed in this basis.

With both the quantum field configuration and the interaction term in the Hamil-
tonian represented in the basis |β〉, Eq. (6) can be realized as a series of matrix-vector
multiplications acting on an initial state vector. To make the numerical calculation
feasible, in this step, we make two approximations: “time-step discretization” and
“basis truncation”: the former is to decompose the time-evolution operator in Eq. (6)
into small but finite steps in light-front time x+, with the step size δx+,

T+e

−
i
2

x+∫

x
+
0

VI dx+

|ψ(x+0 )〉I →
[

1− i
2
VI(x

+
n )δx

+
]

· · ·
[

1− i
2
VI(x

+
1 )δx

+
]

|ψ(x+0 )〉I , (9)

and the latter is to keep the basis dimensionality finite. In tBLFQ, the basis trunca-
tion is performed in the basis state (|β〉) construction stage in BLFQ, which will be
introduced in the next section. “Basis truncation” and “time-step discretization” are
the only two approximations in tBLFQ.

4 Basis construction

In this section we present a brief review of BLFQ [1,2] and explain the procedure of
constructing the tBLFQ basis |β〉 through solving the eigenvalue problem of P−

QED in
BLFQ. For more details, see Ref. [6].

Since quantum field systems generally have large numbers of degrees-of-freedom,
to mitigate the computational burden, it is important to choose an efficient basis for
the eigenvalue problem. The idea in BLFQ is that an efficient basis should capture
the symmetries of the underlying dynamics, so that in such a basis the Hamilto-
nian exhibits a block-diagonal structure. Each block is associated with a group of
quantum numbers corresponding to the symmetries captured by the basis. Thus, the
Hamiltonian can be diagonalized block by block, and in practice, we can selectively
diagonalize only those blocks with desired quantum numbers.
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Specifically for the light-front QED Hamiltonian P−

QED, the BLFQ basis, de-
noted as |α〉, captures the following three symmetries: 1) Translational symme-
try in the x− direction; 2) Rotational symmetry in the transverse plane; 3) Lep-
ton number conservation. These three symmetries correspond to three conserved
operators. These are the longitudinal momentum P+, longitudinal projection of
angular momentum J3, and charge, or net fermion number Q, respectively. The
BLFQ basis states |α〉 are chosen to be the eigenstates of these three operators:
{P+, J3, Q}|α〉 = {2πK/L,Mj, Nf}|α〉 (L is the length of the longitudinal “box” in
which we embed our system, see below). These eigenvalues divide the BLFQ basis
states |α〉 into multiple “segments”. Each segment consists of the basis states |α〉
sharing the same group of eigenvalues.

BLFQ basis states |α〉 are constructed in terms of a Fock sector expansion. Each
Fock particle has helicity, longitudinal momentum p+ = 2πk/L (the sum of k, in each
state, must equal K, which implicitly imposes basis truncation on the longitudinal
degree of freedom), and two transverse degrees of freedom. The latter are described in
terms of the radial quantum number, n, and the angular quantum number, m, of the
eigenstates of a 2D-harmonic oscillator (2D-HO). This choice of basis, motivated by
applications to QCD, is suitable for describing the confining interaction. This choice
is supported by the success of the AdS/QCD approach to hadron spectroscopy [10],
where a similar basis is adopted.

In summary, a complete specification of a BLFQ basis requires 1) the segment
specifiers K,Mj, and Nf , 2) two truncation parameters, namely the choice of Fock
sectors to retain, and the transverse truncation parameter Nmax, the maximum total
number of oscillator quanta 2n + |m| for the Fock states and 3) the “box length” L
in the longitudinal direction and a scale parameter b =

√
MΩ for the 2D-HO wave

functions, where M and Ω are the mass and frequency of the 2D-HO.
Specifically for the nCs processes, the initial state is a single physical electron.

Since the external field interaction V (x+) conserves net fermion number and does not
excite transverse degrees of freedom, we only need to prepare eigenstates of P−

QED

in segments of different K. The K’s in these segments are equally spaced by the
longitudinal momentum quantum number of the background field klas = Ll−/π. In
each segment, we truncate the Fock sectors to the lowest two sectors, |e〉 and |eγ〉. We
take L = 2πMeV−1, so the value of k(K) can be read as the longitudinal momentum
in units of MeV, and b = 0.511MeV, which matches the natural scale in QED set by
the physical electron mass me.

In our constructed BLFQ basis |α〉, P−

QED manifests as a block-diagonal numerical

matrix. Each block is associated with a distinct K. Then, upon diagonalizing P−

QED

block by block (see Ref. [11] for sector-dependent renormalization, and Refs. [12, 13]
for applications), we obtain the eigenvalues P−

β and the associated eigenstates |β〉 in
the basis |α〉,

|β〉 =
∑

α

|α〉〈α|β〉. (10)

These eigenstates |β〉 are the basis states used in tBLFQ. For each basis state, the
invariant mass Mβ relates to its eigenvalue P−

β as: M2
β = P+

β P
−

β − P 2
⊥,β, where P

+
β

and P⊥,β are the longitudinal and transverse momentum for |β〉, respectively. The
ground states (with the lowest invariant mass in each segment) are interpreted as the
physical electron states and the excited states are interpreted as the electron-photon
scattering states.

5 Numerical results

In this section we carry out a sample numerical calculation for the nCs process. A
basis consisting of three segments with K = {Ki,Ki+klas,Ki+2klas} is chosen for
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Figure 1: Time evolution of the system at (from top to bottom) x+ = 0.2, 0.4,
0.6 MeV−1, with the background field switched on at x+ = 0. Each dot represents a
tBLFQ basis state |β〉, an eigenstate of QED. Horizontal axis: the invariant mass of
the state Mβ . Vertical axis: the probability of finding the state |β〉 in units of 10−3.
The inset panels show, at normal scale, the (much larger) probabilities of finding the
single physical electron states (in the K = 1.5, 3.5, 5.5 segments), with invariant
mass Mβ = me.

this calculation. In each segment we retain both the single electron (ground) and
electron-photon (excited) states. The initial state for our process is a single (ground
state) electron in the K = Ki segment. This basis allows for the ground state to be
excited twice by the background (from the segment with K = Ki through to segment
with Ki + 2klas). In this calculation, we take Ki = 1.5 and Nmax = 8, with a0 = 10,
klas = 2 and L = 2π MeV−1. We present the evolution of the electron system in Fig. 1,
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Figure 2: The average invariant mass of the electron-photon system evolves as a
function of exposure time. The vertical axis is the difference between the average
invariant mass of the electron-photon system and that of a single physical electron.

at increasing (top to bottom) light-front times. As time evolves, Fig. 1 shows how the
background causes transitions from the ground state in the K = 1.5 segment to other
eigenstates of P−

QED. Both the single electron states and electron-photon states are
populated; the former represent the acceleration of the electron by the background,
while the latter represent the process of radiation. At times x+ = 0.2 MeV−1, the
single electron state in the K = 3.5 segment becomes populated while the probability
for finding the initial state begins to drop. The populated electron-photon states
begin forming a peak structure. The location of the peak is around the invariant mass

of 0.8 MeV, roughly consistent with the expected value ofMpk1 =
√

P−

i (Ki + klas) =

0.78MeV, where P−

i =
m2

e

Ki
∼ 0.17MeV is the light-front energy of the initial single

electron state with K = 3.5.
As time evolves, the probability of finding the electron in its initial (ground) state

continues to decrease. Single electron states with successively higher K dominate
the system. It also becomes possible to find electron-photon states of higher K and
invariant mass, following the absorption of more energy from the background field as
time evolves (see the second and third rows of Fig. 1).

As the state |ψ;x+〉 encodes all the information of the system, other observables
can be constructed out of |ψ;x+〉. As an example, the evolution of the average in-
variant mass 〈M〉 ≡

∑

βMβ〈β|ψ〉2 of the system as a function of exposure time is

displayed in Fig. 2. The approximately linear increase of the invariant mass up to
an exposure time of 0.6 MeV−1 indicates the fact that photons are created as the
background field pumps energy into the system.

6 Conclusion and outlook

In this paper, we review a recently constructed nonperturbative framework for time-
dependent problems in quantum field theory. It is called “time-dependent BLFQ”
(tBLFQ). Adopting the light-front dynamics and Hamiltonian formalism, tBLFQ pro-
vides the evolution of quantum field amplitudes through the light-front Schrödinger
equation. Given the light-front Hamiltonian of the system, and an initial state as
input, the quantum field amplitudes of the system at any subsequent time can be
evaluated. The entire calculation is performed nonperturbatively with basis trunca-
tion and time-step discretization being the only two approximations.

As a generic method for time-dependent problems in quantum field theory, the
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tBLFQ method can be applied to both first-principles and effective Hamiltonians,
where the time-dependence arises either from the background fields or from using
non-stationary initial states. In this work we apply the tBLFQ method to strong
field laser physics and specifically study the nonlinear Compton scattering process,
in which an electron is accelerated by a background field and emits a photon. The
numerical calculation reveals a coherent superposition of electron acceleration and
photon-emission processes in the nonperturbative regime.

As a next step, we plan to apply this method to relativistic heavy-ion collisions in
which the medium of the colliding nuclei can be modeled as a dissipative background
field. For example, the energy loss of the produced quark and gluon jets in this
evolving background field can be predicted. Another application is the hadronization
process in QCD.
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