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Abstract

The Many-body Fermion Dynamics for nuclear physics (MFDn) code was
originally developed by James Vary and his colleagues for performing nuclear
configuration interaction (CI) calculations. We describe a number of recent al-
gorithmic and implementation advances in MFDn that enabled it to achieve
high performance, and allowed scientists to study properties of light nuclei with
high accuracy on modern high performance computers.
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1 Introduction

The MFDn (Many Fermion Dynamics for nuclear structure) software was developed
by James Vary and his collaborators at Iowa State University [1, 2]. It is a computa-
tional tool for studying nuclear structure.

In MFDn, the nuclear Hamiltonian is evaluated in a large harmonic oscillator
single-particle basis and diagonalized by iterative techniques to obtain the low-lying
eigenvalues and eigenvectors. The eigenvectors are then used to evaluate a suite of
experimental quantities to test accuracy and convergence issues. In several respects,
the approach is similar to the Full Configuration Interaction (FCI) method in other
fields [3, 4]. We often obtain convergence, either by direct diagonalization or simple
extrapolation, and we then claim we have the result of an exact calculation.

In this paper, we describe a number of recent algorithmic and implementation
advances that made MFDn highly efficient on modern high performance computers.

The paper is organized as follows. In Section 2, we will review the general for-
mulation of the nuclear many-body problem and the nuclear CI methodology used
in MFDn for computing a few lowest energy states of a nuclear structure. The im-
plementation details of several key components of MFDn are presented in Sections 3
to 7.

2 Background

The structure of an atomic nucleus with k nucleons is described by a many-body wave-
function Ψ(r1, r2, ... , rk), where rj ∈ R

3, j = 1, 2, ... , k. The wavefunction satisfies
the many-body Schrödinger equation

HΨ(r1, r2, ... , rk) = λΨ(r1, r2, ... , rk), (1)
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where H is a many-body Hamiltonian that relates a nucleus configuration defined
by Ψ to the energy of the system. We denote the energy of the system by λ. The
many-body Hamiltonian H is defined as

H =
1

k

∑

i<j

(pi − pj)
2

2m
+

k
∑

i<j=1

Vn(ri − rj), (2)

wherem is the nucleon mass, pi is a momentum operator, and Vn(ri−rj) is a two-body
potential operator that describes the interaction between the ith and jth nucleons. A
more accurate treatment of the problem may include three-body potentials. Clearly,
the wavefunction Ψ is an eigenfunction of H associated with the eigenvalue λ.

For nuclei that consist of a few nucleons (less than five), there are several methods
to solve (1) directly. However, as k becomes larger, the size of the problem will
become so large that approximate methods are necessary. One way to overcome
the dimensionality explosion is to project the many-body Hamiltonian into a lower
dimensional subspace S spanned by a set of Slater determinants defined as

Φa(r1, r2, ... , rk) =
1√
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, (3)

where φai
is the eigenfunction associated with the ai-th eigenvalue of a (single-particle)

Hamiltonian h = p2/2m+v(r). Conventionally, one uses a harmonic oscillator poten-
tial, which is quadratic in r. The use of Slater determinants is a standard technique
employed in quantum mechanics.

In this paper, we define the index of Φa(r1, r2, ... , rk) by a strictly increasing
k-tuple of integers, i. e. a = (a1, a2, ... , ak), where ai is simply the index of the single-
particle eigenfunction that appears in the ith column of the Slater determinant. We
will refer to Φa(r1, r2, ... , rk) or simply a as a many-body basis state. We will call
each component of a a single-particle state. Not all many-body basis states are valid
because each has to satisfy a set of conditions to be defined later. We denote the set of
all valid many-body basis states {a} by A. The size of A will be denoted by n = |A|.

Suppose the desired many-body wavefunction can be well represented by a linear
combination of the basis functions Φa (a ∈ A), i. e.,

Ψ =
∑

a∈A

caΦa, (4)

where ca ∈ R, we can then solve (1) by computing eigenpairs of a projected Hamilto-
nian Ĥ , where

Ĥa,b =

∫

Ω

(Φ∗
aHΦb) dr1dr2 . . . drk. (5)

Because H is self-adjoint, Ĥ is real symmetric. The eigenvector of Ĥ associated with
the desired eigenvalue (energy) gives the coefficients ca in (4).

Clearly, the dimension of Ĥ, which is the total number of valid many-body basis
states |A|, depends on the total number of nucleons (k) contained in the nucleus of
interest and the largest single-particle state (amax) allowed in Φa(r1, r2, ... , rk), which
is implicitly determined by a constraint imposed on the total oscillator quanta (Nmax).
For a large nucleus with many nucleons and large amax value, n can be extremely large.
However, the number of nonzero elements in Ĥ is typically very small, as we will show
below.

It follows from the mutual orthogonality of all single-particle eigenfunctions φℓ

(ℓ = 1, 2, ... , amax) that a one-body integral in (5) becomes zero when a and b differ
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(a) The growth of the matrix dimension
(|A|) with respect to Nmax
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Figure 1: The characteristics of the CI projected Hamiltonian Ĥ for a variety of
nuclei.

by more than one single-particle state, and a two-body integral becomes zero when a
and b differ by more than two single-particle states, etc. This observation allows us
to determine many of the zero entries of Ĥ without evaluating the numerical integral
in (5).

Empirical evidence suggests that the probability of two randomly chosen but valid
many-body basis states sharing more than k−2 single-particle states is relatively low.
As a result, Ĥ is extremely sparse. Figure 1 shows both the growth of the matrix
dimension (|A|) with respect to Nmax and the growth of the number of nonzero
elements in Ĥ with respect to |A| for a variety of nuclei for both two-body and two-
plus three-body potentials. In practice, we observe that the number of non-zeros in Ĥ
is proportional to |A|3/2.

To compute the eigenvalues of Ĥ efficiently on a high performance parallel com-
puter, the following three issues must be addressed carefully:

1. The generation and distribution of the many-body basis states — This step
essentially determines how the matrix Hamiltonian Ĥ or ĤZ is partitioned and
distributed in subsequent calculations.

2. The construction of the sparse matrix Hamiltonian Ĥ — This step is performed
simultaneously on all processors. Each processor will construct its portion of Ĥ
defined by the many-body basis states assigned to it. Because the positions
of the nonzero elements of the Hamiltonian is not known a priori, the key to
achieving good performance during this step is to quickly identify the locations
of these elements without evaluating them numerically first.

3. The calculation of the eigenvalues and eigenvectors using the Lanczos itera-
tion — The major cost of the Lanczos iteration is the computation required to
perform sparse matrix-vector multiplications of the form y ← Ĥx, where x, y
are both vectors. Performing efficient orthogonalizations of the Lanczos basis
vectors is also an important issue to consider.

3 Parallel basis generation

Because the rows and columns of Ĥ are indexed by valid many-body basis states, the
first step of the nuclear CI calculation is to generate these states so that they can be
used to construct and manipulate matrix elements of Ĥ in subsequent calculations. It
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is desirable to generate the valid many-body basis states in parallel on different pro-
cessors to 1) reduce the basis generation time, 2) allow Hamiltonian to be distributed
and constructed in parallel in subsequent computation.

Because the set of valid many-body states cannot be described by a simple ex-
pression, the strategy we adopt is to enumerate all possible many-body basis states in
some order and pick out the ones that satisfy a set of constraints to be defined below.

When single-particle wave functions φ’s in (3) are chosen to be eigenfunctions of
a harmonic oscillator, each ai corresponds to a set of quantum numbers (n, l, j,mj),
where n ≥ 0 is the quantum number that is associated with the radial component
of the eigenfunction, l ≥ 0 is the angular momentum of the single-particle, j, which
is either |l − 1/2| or l + 1/2, is the coupled spin-angular momentum, and mj , which
can assume the values of −j, j + 1, ... , j − 1, j is the projection of the spin-angular
momentum to a particular spatial axis, often chosen to be the z axis. Single-particle
states are typically ordered by their energy levels (i. e., the corresponding eigenvalues
of the harmonic oscillator Hamiltonian). The energy of the single particle associated
with (n, l, j,mj) can be labeled by N = 2n + l, which is degenerate. Single-particle
states associated with each degenerate energy level are typically ordered by their mj

values.
If the maximum index of the allowed single-particle state is amax, the total number

of different Φa(r1, r2, ... , rk) is

(

amax

k

)

, which can be extremely large. However, in

many cases, interesting physics of a nucleus can be ascertained from a much smaller
model (or configuration) space that contains far fewer Φa(r1, r2, ... , rk)’s that satisfy
additional constraints. In MFDn, these constraints include

1. Oscillator excitation quanta constraint:
∑k

i=1
N(ai) ≤ Nmax, where N(ai) is

the oscillator quanta with the ith single-particle, and Nmax is known as the
maximum oscillator excitation quanta chosen in advance. Clearly, the larger
the Nmax value, the larger the model space is.

2. Magnetic projection constraint:
∑k

i=1
mj(ai) = m, where mj(ai) is the mj

value associated with the ith single-particle and m is a total magnetic projection
constant chosen in advance

3. Parity constraint.

After imposing these constraints, a majority of the enumerated many-body basis
states can be eliminated. A many-body basis state satisfying all three conditions
above is a valid state. The easiest way to generate all many-body basis states is
to enumerate them in a lexicographical order defined below. A many-body basis
state a = (a1, a2, ... , ak) is said to be lexicographically less than another many-body
basis state b = (b1, b2, ... , bk) if and only if there is a j for which aj < bj and ai = bi
for all i < j. For example, if amax = 9, then (1, 3, 4, 8) is succeeded by (1, 3, 4, 9),
which is in turn succeeded by (1, 3, 5, 6), and (1, 3, 8, 9) is succeeded by (1, 4, 5, 6).
The details on how valid many-body states are enumerated can be found in [5].

To carry out nuclear CI calculation on a distributed-memory parallel computer,
the projected Hamiltonian Ĥ must be partitioned and distributed among different
processors. Associated with this partition is a partition and distribution of the many-
body basis states.

Because Ĥ is symmetric, we generate and store only the lower triangular part of
the matrix to minimize memory usage. To create the matrix and processor mapping,
we first partition Ĥ into rectangular blocks of roughly the same size and map the
matrix blocks in the lower triangular part of the 2D partition to different processors.
Figure 2 illustrates one way to map matrix blocks to 6 processors. We label each
distributed block by a processor identification (pid) number that ranges from 1 to np,
where np is the total number of processors in use. Due to the particular distribution
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Figure 2: The projected Hamiltonian Ĥ is partitioned and distributed among 6 pro-
cessors.

pattern shown in Fig. 2, the choice of np is not arbitrary. If we let nd be the number
of diagonal blocks in the partition, then np = nd(nd + 1)/2. For reasons that we
will explain later nd is typically chosen to be an odd integer. In the following, we
will refer to the processors to which the diagonal blocks of Ĥ are assigned as the
diagonal processors. They are labeled by 1 through nd in Fig. 2. In MFDn, row and
column communication groups are created to allow information to be passed among
processors associated with row or column blocks of Ĥ . As we will explain later, the
matrix block to processor mapping shown in Fig. 2 is not the most efficient.

To avoid moving the matrix elements of Ĥ among different processors and to speed
up the construction of Ĥ, we generate the each submatrix block in (2) simultaneously.
Each processor must have two sets of many-body basis states (one corresponding to
the row indices and the other corresponding to the column indices except when the
submatrix block is one the diagonal. In that case, the row many-body basis states
are identical to the column many-body basis states.)

In MFDn, these many-body states are generated in parallel on the diagonal pro-
cessors only. The ith diagonal processor is responsible for enumerating nd ·m + ith
many-body state and checking its validity. The invalid ones are simply discarded.
This generation scheme naturally leads to a nearly cyclic distribution of the valid
many-body states. Once a set of valid many-body basis states generated on the ith
diagonal processor, they are broadcast to all processors that belong to same column
and row processor groups that contain the ith diagonal processor.

The nearly cyclic distribution of the valid many-body states leads to balance load
among different processors because both the sizes of the blocks assigned to different
processors and the number of nonzero matrix elements of Ĥ are approximately the
same [5].

Sometimes, it is convenient to partition or group valid many-body states in some
way so that they can be generated one group at a time. One way to perform such
a partition is to use the {n, l, j} quantum numbers associated with all single-particle
states in Φa as guidance. In this case, a group of many-body basis states associated
with a particular sequence of (n, l, j) quantum numbers {n̄i, l̄i, j̄i} (i = 1, 2, ... , k) is
defined to be

G({n̄i, l̄i, j̄i}) ≡ {Φa|n(ai) = n̄i, l(ai) = l̄i, j(ai) = j̄i), for i = 1, 2, ... , k}. (6)

This particular choice of grouping is useful because the set of many-body states
that belong to the same G({n̄i, l̄i, j̄i}) is invariant under the magnitude square of the

total spin-angular momentum operator Ĵ, which is often denoted by J2.
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Figure 3: A three-level blocking of a portion of the Hamiltonian matrix Ĥ distributed
to an off-diagonal processor. The first (coarsest) level blocks are bordered by solid
lines. The second level of blocks are bordered by thinner dashed lines. The finest
level blocks are bordered by dotted lines, and those blocks containing non-zeros are
shaded.

4 Hamiltonian construction

A pair of many-body states that differ by no more than K single-particle states with
respect to a Hamiltonian that contains at most K-body interactions is called an
interacting pair. A non-interacting pair corresponds to a zero matrix element indexed
by these two states. Such a matrix entry does not need to be evaluated or stored.

Once all many-body basis states have been generated, we can determine the
nonzero structure of the Hamiltonian matrix by comparing each pair of many-body
basis states. However, this brute-force approach of exhaustive comparison requires
time proportional to the square of the number of many-body states. Even though
each such pairwise test is very simple, the sheer number of them renders this process
prohibitively expensive.

A more efficient way to determine the nonzero structure of the Hamiltonian was
developed in [5]. It is based on the observation that the Hamiltonian matrix typi-
cally contains large blocks of zeros. The basic idea is to identify these large blocks
of zeros by separating many-body basis states into different groups and assigning a
group identification (id) to each group. Instead of performing pairwise comparisons
of many-body basis states, we can first perform pairwise comparisons of group id’s.
Such comparison allows us to identify a block that contains zeros only with a single
comparison. Pairwise comparisons of individual many-body basis states only need to
be performed for blocks that are identified to contain nonzero matrix elements. Fur-
thermore, this approach can be implemented recursively, which leads to a hierarchical
scheme for identifying zero matrix blocks. Figure 3 gives a schematic illustration of
what a three-level blocking of a Hamiltonian will look like. The shaded blocks repre-
sent the finest level blocks that contain nonzero matrix elements. In this particular
case, a large block of zeros, the (2,2)-block bordered by solid lines, is identified at the
coarsest level. Nine intermediate-sized zero blocks can be found at the second level.
Sixteen small zero blocks can be seen at the finest level.

5 Algorithms for computing a few eigenvalues

A natural algorithm for computing a selected few eigenvalues and their corresponding
eigenvectors of Ĥ is an iterative method that does not require storing all |A| × |A|
matrix elements. In nuclear physics, the eigenvalues of interest are those at the low end
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of the spectrum of Ĥ because they describe the ground and the first few excited states
of the nucleus. In MFDn, these eigenvalues are computed by the Lanczos method,
which projects Ĥ into a Krylov subspace K(Ĥ, v0) = span{v0, Ĥv0, ... , Ĥ

ℓ−1v0} of
dimension ℓ ≪ n, where v0 ∈ R

n is an arbitrarily chosen starting vector. If V =
(v1, v2, ... , vℓ) consists of an orthonormal basis of K(Ĥ, v0), the Lanczos method can
be described by

ĤV = V T + feTℓ , (7)

where T = V T ĤV is an ℓ × ℓ tridiagonal matrix that represents the projection
of Ĥ into K(Ĥ, v0), f is a residual vector that satisfies V T f = 0, and eℓ is the ℓ-th
column of the identity matrix. Approximations to eigenvalues of Ĥ can be obtained
by computing eigenvalues of the much smaller matrix T . If q is an eigenvector of T
associated with the eigenvalue θ, then z = V q is the approximation to an eigenvector
of Ĥ .

It is well known that well separated extremal eigenvalues converge rapidly in the
Lanczos iteration [6]. Convergence can be further improved by carefully choosing
the starting vector v0 and refining it using the implicitly restarted Lanczos algorithm
developed in [7] and implemented in [8]. The major cost of the algorithm is the
matrix-vector multiplication w ← Ĥv required at each iteration.

An alternative way to compute the k algebraically smallest eigenvalues is to for-
mulate the eigenvalue problem as the following constrained minimization problem

min
ZTZ=I

trace(ZT ĤZ), (8)

where Z ∈ R
|A|×k. This constrained minimization problem can be solved by precondi-

tioned Davidson–Liu method [9] or the locally optimal block preconditioned conjugate
gradient method [10]. Without a preconditioner, the convergence properties of these
methods are similar to that of the Lanczos algorithm. However, when a good pre-
conditioner is available, these methods can be much faster. Sparse matrix vector
multiplication constitutes the major cost of this algorithm also.

Because it is not yet clear how to construct a good preconditioner for this type of
problem, we will focus on the Lanczos algorithm in the subsequent discussion.

6 Scalable implementation

We now describe some techniques for implementing the Lanczos algorithm efficiently
on large-scale distributed memory parallel high performance computers. The com-
putational cost of the Lanczos iteration is dominated by the sparse matrix vector
multiplications (SpMV) w ← Ĥv required to expand the Krylov subspace, as well
as dense matrix vector multiplications required to maintain orthonormality among
columns of V .

6.1 Topology aware task-to-processor mapping for SpMV

To perform the SpMV operations efficiently on a lower triangular processor grid laid
out as in Fig. 2, each input vector is partitioned among the diagonal processors.

A natural way to distribute a vector v to be multiplied by the distributed A matrix
is to partition it conformally with the column partition of A into nd subvectors {vi},
i = 1, 2, ... , nd as shown in Fig. 4. Row and column communication groups are set up
to allow vi to be broadcast among processing units that lie on the ith row or column of
the triangular grid. If we denote the submatrix of A assigned to the (i, j)th processing
unit by Ai,j , each processing unit performs two SpMVs of the form wi = Ai,jvj and
wj = AT

i,jvi. As depicted in Fig. 4, two reductions are required (one along the row
communication groups and one along the column communication groups) to merge
local products wi and wj to form the global result vector w.



Recent advances in MFDn 279

lower triangle

@
@
@
@
@

v1

v2

v3
?

? ?

BCast(vj)

@
@
@
@
@

�

�

�

�

� �

wi ← Aijvj

@
@
@
@
@

-

-

Reduce(wi)

upper triangle

@
@
@
@
@

v1

v2

v3��

�

BCast(vi)

@
@
@
@
@

�

�

�

�

� �

wj ← AT
ijvi

@
@
@
@
@

6

6

Reduce(wj)

Figure 4: The decomposition of a symmetric matrix over a 2D triangular processing
grid and the communication operations required during the parallel SpMV phase.
Little triangular blocks along the matrix diagonal correspond to diagonal processors,
and little squares correspond to off-diagonal processors. Each processor is responsible
for communications and computations associated with the submatrix assigned to it.

The simple parallel SpMV scheme described above has a serious pitfall. Since dif-
ferent communication groups contain different number of processing units, the com-
munication volume is not balanced among different communication groups. For ex-
ample, the first column group contains nd processing units, whereas the ndth column
group consists of a single processing unit only. This imbalance may cause significant
load imbalances in large-scale computations. To address this, we extend the trian-
gular grid on the left in Fig. 5 to a square grid on the right and place nd(nd + 1)/2
processing units on this grid in such a way that each row or column of the square grid
contains exactly (nd+1)/2 processing units. (This is why we require nd to be an odd
integer.) We require that the processing unit that receives the Ai,j submatrix to be
placed on either the (i,j)th or the (j,i)th grid point, but not both. In particular, if
the condition i − j ≤ (nd + 1)/2 is satisfied, then the processing unit Pi,j is placed
on the (i,j)th grid point, otherwise it is placed onto the (j,i)th grid point. As a
result, we can then create row and column communication groups with equal number
of processing units based on the location of each processing unit on the square grid.

Although the above strategy ensures that the communication volume among dif-
ferent communication groups is balanced, the actual performance of the program will

Figure 5: The layout of fifteen processing units (a) on a 2D lower triangular grid
topology and (b) on a 5 × 5 square grid to balance row and column communication
groups.
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Figure 6: A schematic illustration of several different mapping schemes for a 5 × 5
grid, from left to right: DM, CM, BDM and BCM. Tasks mapped to the same column
(row) of the grid belong to the same column (row) communication groups. Tasks with
the same fill patterns belong to the same groups created for basis orthogonalization.

depend on other factors. The mapping between computational tasks and physical
processing units has a strong influence, too.

There are many ways to map task blocks defined in Fig. 5 to different processors,
see Fig. 6. The performance of different mapping schemes can be predicted from
several metrics associated with a network load model that depends on the topology of
the processor layout [11,12]. The task-to-process mapping should be defined in a way
to minimize the effective load on the network measured in addition to communication
volume imbalance. In particular, if we assign 1, 2, ... , nd to the diagonal processors
first, and continue the assignment for each of the subdiagonals until all processors on
the triangular grid are labeled, a scheme which we refer to as the diagonal-major (DM)
ordering of processors, the measured performance of the parallel SpMV is relatively
poor. On the other hand, if we go through the triangular processor grid column by
column, and assign 1, 2, ... , nd along the way, which gives the column-major (CM)
ordering, the performance of SpMV is much better.

6.2 Basis orthogonalization

To eliminate spurious eigenvalues [6], MFDn performs full orthogonalization among
the columns of V in (7). As the number of columns in V increases, orthogonalization
can become a computational bottleneck if it is not effectively parallelized.

For basis orthogonalization, we reconfigure the 2D triangular grid used for parallel
SpMV into a nd × (nd + 1)/2 rectangular processing grid as shown in Fig. 7(a). In
an earlier version of MFDn [5], we used a 2D cyclic distribution of the columns
of V , Fig. 7(b). In this scheme, communicating the local pieces of w, which we denote
by wi, among row communication groups of the 2D rectangular grid require expensive
broadcast and reduction operations. We estimate the total communication volume
to be O(nd × n) in this case. When the dimension of A is extremely large and the
number of processing units used in the computation is large, this communication
overhead significantly hinders the scalability of MFDn.

It turns out that we can reduce the communication overhead associated with
basis orthogonalization by using a hierarchical 1D distribution of the basis vectors
among all processing units. Note that each basis vector v was already divided into nd

subvectors vj , j = 1, 2, ... , nd for SpMV computations, where each vj is associated
with the jth column group in the 2D square grid (Fig. 5). Each subvector vj can then
be partitioned further into (nd + 1)/2 subvectors and distributed among processing
units within the same column communication group, as shown in Fig. 7. In this case,
the expensive broadcast operation required with the 2D cyclic distribution is replaced
with a gathering operation (by MPI Gatherv), which involves a communication volume
of O(n). Similarly, the reduce operation after orthogonalization is replaced with a
scattering operation (by MPI Scatterv). The scattering operation involves O(n) data
transfer, as well. As a result, when the basis vectors are partitioned hierarchically
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Figure 7: (a) 2D rectangular grid for 15 processors. (b) 2D cyclic distribution of the
first 9 basis vectors in V over the 5× 3 rectangular grid. (c) Hierarchical 1D distribu-
tion of the basis vectors in V . With this distribution, the vector w is first partitioned
into 5 subvectors {wi}, i = 1, 2, ... , 5, conformally with the column partitioning of A.
Each subvector wi is further partitioned into 3 shorter vectors, to be scattered to the
processing units with matching labels.

in 1D, the total communication volume is O(n) instead of the O(nd × n) volume
associated with the 2D cyclic distribution discussed earlier.

6.3 A hybrid MPI/OpenMP implementation

In recent years, distributed memory multi-core machines have become widely available
for high performance computing. This trend is likely to continue in the foreseeable
future. On such type of machine, a number of compute nodes are connected via
a high speed communication network. Within each node, several processing units
(or cores) share a common pool of memory. Such architecture allows us to reduce
communication overhead and improve the throughput of computation by combining
message passing based parallelization with thread based concurrency.

An effective technique for reducing communication volume is to restrict MPI com-
munication among nodes that do not share a common pool of memory. This can
be achieved through a hybrid programming paradigm, where local computations are
performed in parallel using a thread based programming model such as OpenMP, and
communication among nodes is done through MPI primitives. To perform a multi-
threaded SpMV on a single node, we use the well-known compressed sparse column
(CSC) method. The OpenMP parallelization for SpMV computations is performed at
the outer-loop level. The columns of the sparse submatrix are assigned to OpenMP
threads dynamically in chunks. The chunk size is chosen large enough to minimize the
dynamic load distribution overheads, while maintaining a good load balance among
threads.

The main benefit of a hybrid parallel implementation is the reduction in the mem-
ory footprint of large-scale computations [13]. Another important benefit is the re-
duced communication volume during the broadcast of v and reduction of w vectors,
which is O(n×nd). This implies that for the same computation (so n is fixed), reduc-
ing the number of diagonal processing units nd would lead to reduced communication
overheads. Since nd ≈

√

2np, by defining a processing unit to be a single CPU with t
cores while fixing the total number of cores used at np, we effectively reduce the num-
ber of MPI processes by a factor of

√
t. Consequently, using hybrid MPI/OpenMP
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parallelization, the overall communication volume is reduced by a factor of
√
t com-

pared to a pure MPI implementation.
In the case of basis orthogonalization, the dense matrix vector multiplication per-

formed on each node can be performed by simply calling a thread-enabled BLAS
subroutine dgemv, which is now standard in the math libraries of multi-core plat-
forms. Since the amount of data transfer required in a hierarchical 1D distributed
basis orthogonalization scheme is O(n) and independent of the number of processing
units, there is no reduction in the communication volume in this phase.

In addition to reducing communication volume, a hybrid OpenMP/MPI imple-
mentation on a distributed multi-core system also provides opportunities for hiding
communication overhead by overlapping communication with computation. It is pos-
sible to implement a symmetric SpMV with a single pass over the elements of the
sparse matrix where both the lower triangular and upper triangular calculations are
performed together. The key observation that allows us to hide communication dur-
ing the SpMV phase is that the symmetric SpMV computations can be divided into
two subtasks: wi = Aijvj (which corresponds to the lower triangular part in Fig. 4)
and wj = AT

ijvi (the upper triangular part). Such a separation breaks certain data
dependencies during SpMV computations. Now the input for the second subtask, vi,
is not required by the first subtask and the output of the first subtask, wi, can be
reduced independently of the second subtask. We should note that going over the ma-
trix elements twice by dividing the SpMV into two subtasks will induce a performance
penalty. But since the matrix elements are streamed sequentially from memory, the
additional burden on the memory subsystem is low compared to the irregular accesses
to vector elements during SpMV.

In a pure MPI implementation of the symmetric SpMV, each processing unit is
responsible for both communication and computation. As shown in Fig. 8, in the
absence of non-blocking collective MPI primitives, effective overlapping of communi-
cation and computation in a pure MPI implementation is not trivial.

Figure 8: In a pure MPI implementation of a parallel symmetric SpMV on an off-
diagonal processing unit (left subfigure), the communication blocks (yellow) separates
the computational blocks (light blue). No communication/computation overlapping
is possible. However, in a hybrid OpenMP-MPI implementation (right subfigure),
the broadcast of vi can be overlapped with the wi = Aijvj computation, and the
reduction of wj can be overlapped with the wj = AT

ijvi computation. The red blocks
indicates where thread synchronization, which has very little overhead, is required.
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However, in the hybrid OpenMP/MPI programming model where a processing
unit runs on multiple cores, we may delegate one core (and the thread mapped to
this core) to perform the communication, while other cores (and their corresponding
threads) perform computations in parallel. As a result, the broadcast of vi can be
overlapped with the computations of the first subtask. Similarly, the reduction on wi

can be done while the computations of the second subtask are being still being carried
out.

The hybrid OpenMP/MPI implementation of SpMV illustrated on the right in
Fig. 8 hides the collective communications performed within row groups. When com-
munication groups are created by using a column major ordering as discussed in
section 6.1, communications along row groups tend to be the costliest ones because
processing units that belong to the same row communication group are likely to be
far apart from each other, as opposed to consecutively rank processing units within a
column communication group [14]. Hence hiding communications within row groups
is expected to have a large impact on the overall performance of the computation.

Note that in our scheme, there is no rigid designation of threads such as a commu-
nication thread or a computation thread. Since we dynamically schedule the compu-
tations among threads during SpMV, once the thread responsible for broadcasting vi
completes this communication task, it can join other threads in the multi-threaded
computations of wi = Aijvj . In addition, the reduction of wi can be efficiently over-
lapped with the calculations of wj = AT

ijvi using the same technique, as shown in
Fig. 8.

7 Computational example

In this section, we report performance gains achieved by incorporating the techniques
discussed above in MFDn. We use one particular example to demonstrate performance
gain. More performance results can be found in [11,12]. The test problem we selected
is the 10B nucleus. We are interested in computing 10 algebraically smallest eigenval-
ues of the Hamiltonian matrix Ĥ constructed by setting Nmax = 8 and Mj = 1. A
2-body interaction potential is used. The dimension of the matrix is roughly 4.8×108

and it contains roughly 1.2 × 1012 nonzero matrix elements in the lower triangular
part of the matrix.

Table 1 lists five different implementations of a parallel Lanczos algorithm. They
correspond to progressive improvements we made in terms of task to processor map-
ping, the way the Lanczos basis vectors are distributed, and whether there is any
overlap between computation and communication. The pure MPI implementation
where processes are arranged on a triangular grid in a diagonal major (DM) order

Table 1: Five versions of parallel implementations of the Lanczos algorithm. They
differ by task to processing mapping, which is related to process ordering, the way
the Lanczos basis vectors are distributed and whether there is any overlap between
computation and communication.

Version
Parallelization Process Ortho. Comm

Strategy Ordering Scheme Overlapping

ver1 MPI only DM 2D Cyclic none

ver2 MPI/OpenMP DM 2D Cyclic none

ver3 MPI only BCM 1D Hierarchical none

ver4 MPI/OpenMP BCM 1D Hierarchical none

ver5 MPI/OpenMP BCM 1D Hierarchical row only
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Figure 9: Strong scaling (left subfigure) and speed-ups (right subfigure) achieved by
different versions on the 10B, Nmax=8, Mj=1 testcase starting from 1,140 cores on
up to 10,560 cores.

and the Lanczos vectors are distributed on a 2D rectangular grid in a cyclic fash-
ion [5] is defined as ver1. On the other extreme, ver5 contains all techniques we
discussed above. In particular, it allows the SpMV computations to be overlapped
with communication.

The left subfigure in Fig. 9 shows the scalability of each version in Table 1 for
this test problem. We define the CPU-hour cost of a single Lanczos iteration as the
wall-clock time (in hours) required for an iteration times the number of cores used
in that run. So in Fig. 9, the CPU-hour cost plot of an implementation with perfect
strong-scaling properties would follow a horizontal line. As seen in Fig. 9, ver5 follow
a nearly horizontal line, meaning that it has very good strong-scaling properties.

The right subfigure in Fig. 9 shows the speed-up achieved by each version for
the same testcase. The speed-up measurements from ver1 and ver2 plateau after
about 4,000 cores. Similarly, the gains from ver3 and ver4 start increasing only
slightly after 7,000 and 9,000 cores, respectively. However, we are still able to achieve
significant speed-up beyond 10,000 cores in ver5.
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