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Abstract

The rapid falloff of the oscillator functions at large radius (Gaussian asymp-
totics) makes them poorly suited for the description of the asymptotic properties
of the nuclear wave function, a problem which becomes particularly acute for
halo nuclei. We consider an alternative basis for ab initio no-core configuration
interaction (NCCI) calculations, built from Coulomb–Sturmian radial functions,
allowing for realistic (exponential) radial falloff. NCCI calculations are carried
out for the neutron-rich He isotopes, and estimates are made for the RMS radii
of the proton and neutron distributions.
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1 Introduction

The ab initio theoretical description of light nuclei is based on direct solution of the
nuclear many-body problem given realistic nucleon-nucleon interactions. In no-core
configuration interaction (NCCI) calculations [1, 2], the nuclear many-body problem
is formulated as a matrix eigenproblem. The Hamiltonian is represented in terms of
basis states which are antisymmetrized products of single-particle states for the full
A-body system of nucleons, i. e., with no assumption of an inert core.

In practice, the nuclear many-body calculation must be carried out in a trun-
cated space. The dimension of the problem grows combinatorially with the size of
the included single-particle space and with the number of nucleons in the system.
Computational restrictions therefore limit the extent to which converged results can
be obtained, for energies or for other properties of the wave functions. Except for
the very lightest systems (A . 4), convergence is generally beyond reach. Instead, we
seek to approach convergence as closely as possible. Based on the still-unconverged
calculations which are computationally feasible, we would then ideally be able to ob-
tain a reliable estimate of the true values of observables which would be obtained
in the full, untruncated space. Therefore, progress may be pursued both by seeking
accelerated convergence, e. g., through the choice of basis, as considered here, and by
developing means by which robust extrapolations can be made [3–7].

NCCI calculations have so far been based almost exclusively upon bases con-
structed from harmonic oscillator single-particle wave functions. The harmonic oscil-
lator radial functions have the significant limitation that their asymptotic behavior is

Gaussian, i. e., falling as e−αr2 for large r. The actual asymptotics for nucleons bound

by a finite-range force are instead expected to be exponential, i. e., falling as e−βr.
The problem encountered in using an oscillator basis to describe a system with

exponential asymptotics may be illustrated through the simple one-dimensional ex-
ample of the Schrödinger equation with a Woods–Saxon potential. In Fig. 1, we see
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Figure 1: The calculated wavefunction obtained when a problem with exponential
asymptotics — here, the Woods–Saxon problem is taken for illustration — is solved in
a finite basis of oscillator functions. The radial probability density r2|ϕ(r)|2 is shown
on a logarithmic scale, so that exponential asymptotics would appear as a straight
line. The Woods–Saxon and oscillator potentials are shown in the inset. (Solutions
are for the Woods–Saxon 1s1/2 function, with potential parameters appropriate to
neutrons in 16O [8], with maximal basis radial quantum numbers n as indicated.)

the results of solving for a particular eigenfunction in terms of successively larger
bases of oscillator radial functions. In the classically forbidden region, where the po-
tential is nearly flat, the tail of the wave function should be exponential. It should
thus appear as a straight line on the logarithmic scale in Fig. 1. Inclusion of each
additional basis function yields a small extension to the region in which the expected
straight-line behavior is reproduced, but, for any finite number of oscillator functions,
there is a radius beyond which the calculated tail is seen to sharply fall below the
true asymptotics.

Observables which are sensitive to the large-radius asymptotic portions of the
nuclear wave function therefore present a special challenge to convergence in NCCI
calculations with a conventional oscillator basis. Such “long-range” observables in-
clude the RMS radius and E2 moments and transitions, since the r2 dependence of
the relevant operators in both cases preferentially weight the larger-r portions of the
wave-function. The results for these observables in NCCI calculations are in general
highly basis-dependent [9, 10].

Furthermore, a prominent feature in light nuclei is the emergence of halo struc-
ture [11], in which one or more loosely-bound nucleons surround a compact core,
spending much of their time in the classically-forbidden region. A realistic treat-
ment of the long-range properties of the wave function is essential for an accurate
reproduction of the halo structure [12].

We are therefore motivated to consider alternative bases which might be better
suited for expanding the nuclear wave function in its asymptotic region. The frame-
work for carrying out NCCI calculations with a general radial basis is developed in
Ref. [13]. We explore the use of the Coulomb–Sturmian functions [14–16], which form
a complete set of square-integrable functions and have exponential asymptotics.

In the present work, we apply the Coulomb–Sturmian basis to NCCI calculations
for the neutron halo nuclei 6,8He — as well as to the baseline case 4He, for which con-
verged results can be obtained. We examine the possibility of extracting RMS radii
for the proton and neutron distributions based on a relatively straightforward esti-
mate, the “crossover point” [9,10], pending further development of more sophisticated
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extrapolation schemes [5]. Motivated by the disparity between proton and neutron
radial distributions in the neutron-rich halo nuclei, we also explore the use of proton-
neutron asymmetric bases, with different length scales for the proton and neutron
radial basis functions. The basis and methods are first reviewed (Section 2), after
which the results for 4,6,8He are discussed (Section 3).

2 Basis and methods

The harmonic oscillator basis functions, as used in conventional NCCI calculations,
constitute a complete, discrete, orthogonal set of square-integrable functions and are
given by Ψnlm(b; r) = Rnl(b; r)Ylm(r̂)/r, with radial wave functions

Rnl(b; r) ∝ (r/b)l+1Ll+1/2
n

[

(r/b)2
]

e−
1
2 (r/b)

2

, (1)

where the Lα
n are generalized Laguerre polynomials, the Ylm are spherical harmonics, n

is the radial quantum number, l and m are the orbital angular momentum and its
z-projection, and b is the oscillator length. The Coulomb–Sturmian functions likewise
constitute a complete, discrete, orthogonal set of square-integrable functions, while
also possessing exponential asymptotics more appropriate to the nuclear problem.
They are given by Λnlm(b; r) = Snl(b; r)Ylm(r̂)/r, with radial wave functions

Snl(b; r) ∝ (2r/b)l+1L2l+2
n (2r/b)e−r/b, (2)

where b again represents a length scale. Further details may be found in Ref. [13].
Both sets of radial functions are shown in Fig. 2, for comparison.

For either basis, the single-particle basis states |nljm〉 are then defined by coupling
of the orbital angular momentum with the spin, to give total angular momentum j,
and the many-body basis is defined by taking antisymmetrized products of these
single-particle states. Thus, the structure of the many-body calculation is independent
of the details of the radial basis. The choice of radial basis only enters the calculation
through the values of the Hamiltonian two-body matrix elements (or higher-body
matrix elements, if present), which we must first generate as the input to the many-
body calculation.
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Figure 2: Radial functions (a) Rnl(b; r) of the harmonic oscillator basis and
(b) Snl(bl; r) of the Coulomb–Sturmian basis, with bl given by the node-matching
prescription (see text). These functions are shown arranged according to the har-
monic oscillator principal quantum number N ≡ 2n + l, and are labeled by l. The
dotted curves show the same functions dilated outward by a factor of

√
2 ≈ 1.414.
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The nuclear Hamiltonian for NCCI calculations has the form H = Trel + V ,
where Trel is the Galilean-invariant, two-body relative kinetic energy operator, and V
is the nucleon-nucleon interaction.1 The relative kinetic energy decomposes into one-
body and two-body terms as

Trel ≡
1

4AmN

∑′

ij

(pi − pj)
2 =

1

2AmN

[

(A− 1)
∑

i

p2
i −

∑′

ij

pi · pj

]

. (3)

Since the two-body term is separable, matrix elements of Trel may be calculated
in a straightforward fashion for any radial basis, in terms of one-dimensional radial
integrals of the operators p and p2 [13].

Calculation of the interaction two-body matrix elements becomes more involved
if one moves to a general radial basis. The nucleon-nucleon interaction is defined in
relative coordinates. The oscillator basis is special, in that matrix elements in a rela-
tive oscillator basis, consisting of functions Ψnl(r1 − r2), can readily be transformed
to the two-body oscillator basis, consisting of functions Ψn1l1(r1)Ψn2l2(r2), by the
Moshinsky transformation. We therefore still begin by carrying out the transforma-
tion to two-body matrix elements 〈cd; J |V |ab; J〉 with respect to the oscillator basis,
and only then carry out a change of basis to the Coulomb–Sturmian basis in the
two-body space, as [13]

〈c̄d̄; J |V |āb̄; J〉 =
∑

abcd

〈a|ā〉〈b|b̄〉〈c|c̄〉〈d|d̄〉 〈cd; J |V |ab; J〉, (4)

where we label single-particle orbitals for the oscillator basis by unbarred symbols a =
(nalaja) and those for the Coulomb–Sturmian basis by barred symbols ā = (n̄a l̄aj̄a).
The coefficients 〈a|ā〉 required for the transformation are obtained from straight-
forward one-dimensional overlaps of the harmonic oscillator and Coulomb–Sturmian
radial functions, 〈Rnl|Sn̄l〉 =

∫

∞

0 dr Rnl(bint; r)Sn̄l(b; r). The oscillator length bint
with respect to which the interaction two-body matrix elements are defined and the
length scale b of the final Coulomb–Sturmian basis functions may in general be dif-
ferent. The change-of-basis transformation in (4) is, in practice, limited to a finite
sum, e. g., with a shell cutoff Na, Nb, Nc, Nd ≤ Ncut. The cutoff Ncut must be chosen
high enough to insure that the results of the subsequent many-body calculation are
cutoff-independent, which may in general depend upon the oscillator and Coulomb–
Sturmian length parameters, interaction, nucleus, and observable at hand.

Any single particle basis, including (1) or (2), has a free length scale b. For the
oscillator basis, this is traditionally quoted as the oscillator energy ~Ω, where

b(~Ω) =
(~c)

[(mN c2)(~Ω)]1/2
. (5)

In deference to the convention of presenting NCCI results as a function of the basis
“~Ω”, we nominally carry over this relation to define an ~Ω parameter for general
radial bases, although ~Ω no longer has any direct physical meaning as an energy
scale. Regardless, the inverse square-root dependence remains, so that a factor of two
change in ~Ω describes a factor of

√
2 change in radial scale, as illustrated for both

harmonic oscillator and Coulomb–Sturmian bases by the dotted curves in Fig. 2.
Furthermore, there is much additional freedom in the basis, since the many-body

basis states (antisymmetrized product states) constructed from a single-particle basis
are orthonormal so long as the single-particle states are orthonormal. Orthogonal-
ity for single-particle states of different l or j follows entirely from the angular and

1A Lawson term proportional the number Nc.m. of center-of-mass oscillator quanta can also be
included, to shift center-of-mass excitations out of the low-lying spectrum, but it is not essential for
the ground-state properties considered here. The implications of center-of-mass dynamics for general
bases are addressed in Ref. [13].
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spin parts of the wave function. Only orthogonality within the space of a given l
and j follows from the radial functions, e. g., for the Coulomb–Sturmian functions,
〈n′l′j′|nlj〉 =

[∫

dr Sn′l(b; r)Snl(b; r)
]

δl′lδj′j . We are therefore free to choose b in-
dependently, firstly, for each l space (or j space), as bl (or blj), and, secondly, for
protons and neutrons, as bp and bn.

The first observation raises the possibility, still to be explored, of obtaining signif-
icant improvements in the efficacy of the basis by optimizing the l-dependence of the
length parameter. In Ref. [13], the radial scale of the Coulomb–Sturmian functions,
for each l, was fixed by matching the first node of the n = 1 Coulomb–Sturmian
function to the first node of the n = 1 oscillator function, at that l, yielding the
prescription bl = [2/(2l+ 3)]1/2b(~Ω) [13].

The second observation raises the possibility of proton-neutron asymmetric length
scales, which might be advantageous for nuclei with significant disparities between the
proton and neutron distributions, in particular, halo nuclei. Therefore, in the present
work, we adopt

bl,p =

√

2

2l+ 3
b(~Ω), bl,n = β

√

2

2l+ 3
b(~Ω), (6)

where β sets an overall relative scale bn/bp. For example, if the solid and dotted
curves in Fig. 2(b) are taken to represent the proton and neutron radial functions,
respectively, then the figure illustrates the case in which bn/bp =

√
2 ≈ 1.414.

3 Results for the He isotopes

We carry out calculations for the isotopes 4,6,8He using both the harmonic oscillator
and Coulomb–Sturmian bases. These calculations are based on the JISP16 nucleon-
nucleon interaction [17], plus Coulomb interaction. The bare interaction is used, i. e.,
without renormalization. The proton-neutron M -scheme code MFDn [18, 19] is em-
ployed for the many-body calculations. Results are calculated with basis truncations
up to Nmax = 14 for 4He, Nmax = 12 for 6He, and Nmax = 10 for 8He.2

The last neutrons in 6He and 8He are only weakly bound, with two-neutron separa-
tion energies of 0.97MeV and 2.14MeV, respectively. These isotopes are interpreted
as consisting of neutron halos surrounding an α core [11]. The basic observables indi-
cating halo properties are the RMS radii of the proton and neutron distributions, rp
and rn, respectively.

3 Moving from 4He to 6He, rp increases by ∼32%. This may be
understood as resulting from the recoil of the α core against the halo neutrons, and
potentially core polarization, as well. In turn, rn is larger than rp by ∼42%, reflecting
the extended halo neutron distribution. The radii for 8He are comparable to those
for 6He.

We first consider calculations for 4He as a baseline. Results are shown over two
doublings in ~Ω, i. e., representing a doubling in basis length scale, in Fig. 3. Energy
convergence is reached for the harmonic oscillator basis, as evidenced by approxi-
mate Nmax and ~Ω independence of the higher Nmax results over a range of ~Ω val-
ues, in Fig. 3(a, b). Convergence is obtained at the ∼10 keV level by Nmax = 14. The

2The harmonic oscillator many-body basis is normally truncated according to the Nmax scheme,
based on the total number of oscillator quanta. That is, the many-body basis states are characterized
by a total number of oscillator quanta Ntot ≡

∑
i Ni, where Ni ≡ 2ni + li. If Ntot is written as

Ntot = N0 +Nex, where N0 in the lowest Pauli-allowed number of quanta, then the basis is subject
to the restriction Nex ≤ Nmax. We formally carry this truncation over to the Coulomb–Sturmian
basis, although N ≡ 2n+ l no longer has significance as an oscillator principal quantum number.

3Specifically, rp and rn are the RMS radii of the point-proton and point-neutron distributions,
measured relative to the center of mass. See Ref. [20] for definitions, and Ref. [13] for evaluation of the
two-body relative RMS radius observable with a general radial basis. From the analysis of experimen-
tal charge and matter radii in Ref. [11], 4He has rp = 1.457(10) fm (≈ rn), 6He has rp = 1.925(12) fm
and rn = 2.74(7) fm, and 8He has rp = 1.807(28) fm and rn = 2.72(4) fm.
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Figure 3: The calculated 4He ground state energy (top) and RMS point-
proton radius rp (bottom), using the conventional oscillator (left) and Coulomb–
Sturmian (right) bases. These are shown as functions of the basis ~Ω parameter,
for Nmax = 4 to 14 (as labeled), and for transformation cutoffs Ncut = 9, 11, and 13
(Coulomb–Sturmian basis only, indicated by dashing, curves nearly indistinguishable).
The converged energy is indicated by the horizontal line (at top), the crossover radii
by dashed horizontal lines (at bottom), and the spread in radius values by vertical
bars (again at bottom).

binding energies for 4He computed with the Coulomb–Sturmian basis lag significantly
behind those obtained with the oscillator basis, by about two steps in Nmax. This
should perhaps not be surprising, given that 4He is tightly bound, and the structure
can thus be expected to be driven by short-range correlations rather than asymptotic
properties. Incidentally, it may be seen from Fig. 3(b, d) that stability with respect to
the cutoff in the change-of-basis transformation (4) has been obtained — calculations
with Ncut = 9, 11, and 13 are virtually indistinguishable (the transformation has been
carried out from oscillator basis interaction matrix elements at ~Ωint = 40MeV).

Convergence of the computed RMS radii, for both the oscillator and Coulomb–
Sturmian bases, is again indicated by approximate Nmax and ~Ω independence over a
range of ~Ω values, which appears as a shoulder in the curves of Fig. 3(c, d). The ~Ω
dependence for the Coulomb–Sturmian calculations appears to be moderately shal-
lower, over the range (two doublings) of ~Ω shown, than for the harmonic oscillator
calculations [see vertical bars in Fig. 3(c, d)].

It was proposed in Refs. [9, 10] that the radius can be estimated — even before
convergence is well-developed — by the crossover point between the curves obtained
for successive Nmax values. This is an admittedly ad hoc prescription, rather than a
theoretically motivated extrapolation. However, we can test it — for both oscillator
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Figure 4: The 4He ground state RMS point-proton radius rp, as estimated from
the crossover point (see text), calculated for the harmonic oscillator and Coulomb–
Sturmian bases. The experimental value is from Ref. [11].

and Coulomb–Sturmian bases — in this case of 4He, where the final converged value is
known. The crossover radii are shown as a function of Nmax, for both bases, in Fig. 4.
The curves used in deducing these crossovers are computed by cubic interpolation of
the calculated data points at different ~Ω. The crossovers already serve to estimate
the final converged value to within ∼0.05 fm at Nmax = 6. It may be noted, from
Fig. 4, that the converged radius obtained with the JISP16 interaction agrees with
experiment to within ∼0.03 fm.

Let us now consider the calculations for the halo nuclei 6,8He. The computed
ground state energies, proton radii, and neutron radii are shown in Figs. 5 and 7.
Results are included (at right in each figure) for a Coulomb–Sturmian basis with
proton-neutron asymmetric length scales in the ratio bn/bp = 1.414, which is com-
parable to the ratio rn/rp of neutron and proton distribution radii for these nuclei.
Energy convergence in the Coulomb–Sturmian basis lags that of the harmonic os-
cillator basis, but less dramatically than seen above for 4He. A basic three-point
exponential extrapolation of the energy with respect to Nmax, at each ~Ω value, is in-
dicated by the dashed curves in Figs. 5 and 7. The extrapolated energy is remarkably
~Ω-independent in the bn/bp = 1.414 calculations, still with some Nmax dependence.
It appears to be approximately consistent with the harmonic oscillator extrapolations
as well. However, such extrapolations must be viewed with caution, as both theoreti-
cal arguments and empirical studies suggest that other functional forms may be more
appropriate, over at least portions of the ~Ω range [4–6].

Comparing the results for radii obtained with the various bases, for 6,8He, we see
that the Coulomb–Sturmian results (for either bn/bp = 1 or bn/bp = 1.414) again have
a moderately shallower ~Ω dependence than obtained with the harmonic oscillator
basis. Well-defined and stable crossover points are visible in Figs. 5 and 7, especially
for the bn/bp = 1.414 calculations (at right). The extracted crossover radii are shown,
as functions of Nmax, in Figs. 6 and 8. The radii obtained for the Coulomb–Sturmian
calculations with different ratios of neutron and proton length scales (bn/bp = 1,
1.189, and 1.414) track each other closely from Nmax ≈ 8 onward, agreeing with
each other to within ∼0.1 fm. For rp, the values are stable with respect to Nmax

and agree with the values obtained from the harmonic oscillator basis crossover as
well. For rn, it appears that the values might be drifting systematically with Nmax,
although they do remain within an ∼0.2 fm range from Nmax = 6 onward. (The
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Figure 5: The calculated 6He ground state energy (top) and RMS point-proton
radius rp and point-neutron radius rn (bottom), using the conventional oscilla-
tor basis (left), Coulomb–Sturmian basis (center), and Coulomb–Sturmian basis
with bn/bp = 1.414 (right). Exponentially extrapolated energies are indicated by
dashed curves (at top), and crossover radii by dashed horizontal lines (at bottom).
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Figure 6: The 6He ground state RMS point-proton radius rp (lower curves) and point-
neutron radius rn (upper curves), as estimated from the crossover point (see text),
calculated for the harmonic oscillator basis and for Coulomb–Sturmian bases with
bn/bp = 1, 1.189, and 1.414 (as indicated). Experimental values are from Ref. [11].
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Figure 7: The calculated 8He ground state energy (top) and RMS point-proton
radius rp and point-neutron radius rn (bottom), using the conventional oscilla-
tor basis (left), Coulomb–Sturmian basis (center), and Coulomb–Sturmian basis
with bn/bp = 1.414 (right). Exponentially extrapolated energies are indicated by
dashed curves (at top), and crossover radii by dashed horizontal lines (at bottom).
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neutron radius rn (upper curves), as estimated from the crossover point (see text),
calculated for the harmonic oscillator basis and for Coulomb–Sturmian bases with
bn/bp = 1, 1.189, and 1.414 (as indicated). Experimental values are from Ref. [11].
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crossover radii obtained from the harmonic oscillator calculations are fluctuating over
a wider range.) Therefore, it is not possible to give a definitive value, but an estimate
of rn ≈ 2.5–2.6 fm can reasonably be made, for both 6,8He.

Thus, ab initio NCCI calculations for 6,8He with the JISP16 interaction, using
both conventional and Coulomb–Sturmian bases, yield consistent estimates of the
RMS point-proton and point-neutron radii, when these are extracted by the crossover
prescription. The results qualitatively reproduce the trend in proton and neutron
radii across the He isotopes, while quantitatively suggesting that the JISP16 inter-
action may yield radii which are smaller than experimentally observed, by as much
as ∼0.2–0.3 fm for the 6,8He neutron radii.
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